
Journal of Global Optimization 25: 91–111, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

91

A Decision Criterion for the Optimal Number of
Clusters in Hierarchical Clustering �

YUNJAE JUNG1, HAESUN PARK2,3, DING-ZHU DU2 and BARRY L.
DRAKE4

1Qwest Communications, 600 Stinson Blvd., Minneapolis, MN 55413, USA (e.mail:
yunjae@cs.umn.edu) 2Department of Computer Science and Engineering University of Minnesota,
Minneapolis, MN 55455, USA (e-mail: hpark@cs.umn.edu) 3Korea Institute for Advanced Study
207-43 Cheongryangri-dong, Dongdaemun-gu Seoul 130-012, South Korea; 4CDT, Inc.,
Minneapolis, MN 55454, USA (e-mail: bldrake1@yahoo.com)

Jan. 21, 2002

Abstract. Clustering has been widely used to partition data into groups so that the degree of as-
sociation is high among members of the same group and low among members of different groups.
Though many effective and efficient clustering algorithms have been developed and deployed, most
of them still suffer from the lack of automatic or online decision for optimal number of clusters. In
this paper, we define clustering gain as a measure for clustering optimality, which is based on the
squared error sum as a clustering algorithm proceeds. When the measure is applied to a hierarchical
clustering algorithm, an optimal number of clusters can be found. Our clustering measure shows good
performance producing intuitively reasonable clustering configurations in Euclidean space according
to the evidence from experimental results. Furthermore, the measure can be utilized to estimate the
desired number of clusters for partitional clustering methods as well. Therefore, the clustering gain
measure provides a promising technique for achieving a higher level of quality for a wide range of
clustering methods.

1. Introduction

Clustering refers to the process of grouping patterns so that the patterns are similar
within each group and remote between different groups [1]. The distribution of
groups can be defined as a cluster configuration. The cluster configuration is valid
if clusters cannot reasonably occur by chance or as a beneficial artifact of a cluster-
ing algorithm [2]. An optimal cluster configuration is defined as an outcome of all
possible combinations of groupings, which presents a set of the most “meaningful”
associations. Even if the definition of clustering is that simple, evaluation of cluster-
ing performance is well known as a fundamental but difficult problem. One reason
is that clustering should be performed without a priori understanding of the internal
structure of the data. In addition, it is impossible to determine which distribution
of clusters is best given certain input patterns without an objective measure for
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clustering optimality. Thus, there have been many attempts to formulate a measure
of optimal clustering in the past . However, only a small number of independent
clustering criteria can be understood both mathematically and intuitively [2,12].
Consequently, the hundreds of criterion functions proposed in the literature are
related and the same criterion appears in several disguises [3–7].

Even though an objective measure is given, the difficulty of optimal clustering
stems from the astounding number of possible combinations of cluster configura-
tions [8]. The number of ways of generating k clusters from n patterns is a Stirling
number of the second kind [9–11]:

S(k)
n = 1

k!
k∑

i=1

(−1)(k−i)

(
k

i

)
in.

In particular, the huge volume of data and the potentially high dimensionality of
the patterns increase the difficulty of achieving a measure for optimal clustering.
Furthermore, it is hard to select a criterion that translates into an intuitive notion of
a “cluster” from a reasonable mathematical formula [12]. Feature selection before
clustering and cluster labeling after clustering are also challenging problems. As a
result, many clustering algorithms to date have been heuristic or ad hoc [2,12].

Since no ideal solution to the optimal clustering problem has existed from early
clustering research [13], recently proposed algorithms have focused mostly on
efficiency [14–19] and scalability [20–25] to reduce the computational cost and
increase processing capability, respectively. It may be possible to produce a cluster
configuration very quickly and process huge amounts of data at once. However,
often there is no guarantee of achieving an optimal or close-to-optimal clustering
configuration.

We propose a method to measure clustering optimality quantitatively with a
purpose to use it to determine an optimal number of clusters in various clustering
algorithms. The method has been designed based on the assumption that the op-
timal cluster configuration can be recognized only by the intuitive and subjective
interpretation of a human. Since intuitive validation of clustering optimality can be
maximized in two dimensional feature space, it is useful to consider two dimen-
sional Euclidean space for the sake of an objective decision as depicted in Figure
1.

In order to quantify clustering optimality, we introduce clustering gain, which
has been designed to have a maximum value when intra-cluster similarity is max-
imized and inter-cluster similarity is minimized [8,26]. Thus, the optimal cluster
configuration can be identified by the maximum of the clustering gain curve. This
measure can be directly used to explore an optimal configuration for all hierarchical
clustering algorithms as they proceed. The measure can also be useful for perform-
ance comparison among clustering algorithms since the clustering performance is
also measured by clustering gain.

Since discovering all possible combinations of cluster configuration is computa-
tionally prohibitive [8,12], most partitional clustering algorithms are dependent on
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Figure 1. A series of snapshots of clustering configurations in Euclidean distance.

users to determine the target number of clusters. We show how the desired number
of clusters can be estimated based on the data using the clustering gain measure.
The best cluster configuration will be one which can be produced by any specific
hierarchical clustering algorithm. Consequently, the measure is used to estimate
the desired number of clusters in partitional clustering algorithms.

According to the experimental results, most commonly used hierarchical clus-
tering algorithms are able to produce intuitively reasonably clustered configura-
tions using our clustering measure when the input patterns are distributed in a well
isolated fashion. Moreover, the desired number of clusters for partitional clustering
methods, e.g., k-means, has been successfully estimated experimentally.

The rest of this paper is organized as follows. In Section 2, some background
information on previous work is presented to derive optimal clustering measures.
The design scheme of the optimal clustering gain measure is discussed in Section
3. Section 4 discusses how the proposed method can be used to evaluate the per-
formance of clustering algorithms. Finally, we discuss how to estimate the optimal
number of clusters for partitional clustering algorithms using our new scheme in
Section 5.



94 Y. JUNG ET AL.

2. Optimal Clustering

Stopping criteria for optimal clustering have been the topic of considerable past
research effort [27]. Specifically, deciding the optimal level of a dendrogram and
estimating the number of target clusters remains as a challenging and fundamental
problem. For hierarchical agglomerative clustering, some decision rules have been
provided by Milligan and Cooper [28] to determine the appropriate level of the
dendrogram [29,30] for optimal clustering. In addition, Milligan compared and
described objective functions for optimal agglomerative clustering. However, the
functions are based on strong assumptions, heuristics, and experimental depend-
ency. Recently, a stopping rule for the hierarchical divisive clustering method has
been suggested in the Principal Direction Divisive Partitioning (PDDP) algorithm
[31]. While the PDDP algorithm is proceeding, a dynamic threshold based on a
so-called centroid scatter value is calculated. The rule is to stop partitioning when
the centroid scatter value exceeds the maximum cluster scatter value at any partic-
ular point. This approach relies on experimental observations. In general, currently
used stopping criteria for hierarchical clustering methods are based on predefined
thresholds including the number of iterations, the number of clusters, average dis-
similarity [32] within a cluster, maximum distance between patterns, and relative
inter-connectivity and relative closeness [33].

For non-hierarchical partitional algorithms, Dubes [27] provided a separation
index:

S(k) = | f (k + 1, k) − f (k, k − 1) |
1+ | f (k + 1, k)f (k, k − 1) | , (1)

where

f (k + 1, k) = MH(k + 1) − MH(k).

The value MH is the point serial correlation coefficient between the matrix of
Euclidean distances for patterns and a “model” matrix, and k is the number of
clusters. The model matrix sets the distance between two patterns to be the dis-
tances between the centers of clusters to which the patterns belong. A stopping
rule is adopted to search for a significant knee in the curve of MH(k) as k varies
from kmax to 2 where kmax is the maximum possible number of clusters.. However, a
threshold that distinguishes the knee from other anomalies is difficult to determine.
In addition, the rule is not able to avoid premature stopping, i.e., the convergence
to local minima problem. Similarly, Boulder and Odell [34] introduced a cluster
separation measure

Rij ≡ Si + Sj

Mij

, (2)

where Si is a dispersion measure of cluster i such as the squared error sum and Mij

is the distance between two centroids. The separation measure will be that which
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minimizes the average similarity as follows

R ≡ 1

n

k∑
i=1

niRi, (3)

where Ri ≡ maximum of Rij , i �= j , ni is the number of paterns in cluster i, and
n is the total number of the patterns to be clustered. However, a unique optimal
clustering condition can not be detected by the separation measure. According to
the experimental results, there are many minimum points in the hierarchical system
[34]. Furthermore, there is no theoretical basis for the feasibility of the measure and
no reasonable separation measure for partitional clustering seems to exist at present
[19].

3. Design of a measure for optimal clustering

3.1. CLUSTERING BALANCE

The clustering problem is to partition the given input patterns into a specific number
of groups (clusters) so that the intra-cluster similarity is maximized and the inter-
cluster similarity is minimized in a particular metric space [8,26]. Throughout the
paper, we will use the following notations. Pattern i is a feature vector in an m

dimensional space, denoted as

pi = [pi1, pi2, . . . , pim]T ,
and a cluster Cj is a set of patterns grouped together by a clustering algorithm and
expressed by

Cj = {p(j)

1 , p
(j)

2 , . . . , p(j)
nj

},
where nj is the number of patterns in cluster Cj . We will assume that there are total
of n vectors to be clustered and the total number of the clusters is k. Accordingly,∑k

i=1 ni = n. In addition, p(j)

0 denotes the centroid of the cluster j , which is
defined as

p
(j)

0 = 1

nj

nj∑
i=1

p
(j)

i .

The centroid is a mean vector of the cluster and provides a compressed represent-
ation of the cluster in a simpler form. The centroid is often used for cluster data
compression.

Cluster configuration is a random variable whose possible outcome is a partic-
ular assignment of input pattern sets. The problem of optimal clustering is to find
a cluster configuration that is optimized according to some evaluation criterion.
However, as mentioned before, the number of ways of clustering n observations



96 Y. JUNG ET AL.

into k groups is enormously large [35]. In fact, a combinatorial search of the set of
possible configurations for optimal clustering is clearly computationally prohibit-
ive [27] and, is NP-complete [36,37]. Accordingly, currently used agglomerative
clustering algorithms take an approximation approach by merging more similar
patterns prior to grouping less similar patterns to construct a cluster hierarchy. A
measure of the similarity between two patterns drawn from the same feature space
plays an essential role in these clustering procedures [12,35].

The most popular metric for measuring similarity between patterns is the Eu-
clidean distance since it is more intuitive and applicable, especially in two di-
mensional feature space [2,13]. The most intuitive and frequently used criterion
function in clustering techniques is the squared error criterion which is the sum
of squared distances from the centroid of a group to every pattern in the group
[13,14,19,38–43] which can be expressed using the Euclidean distance [2,44].

The intra-cluster error sum � is defined by the squared error e as

� =
k∑

j=1

nj∑
i=1

e(p
(j)

i , p
(j)

0 ).

which, using the Euclidean distance, can be denoted as

� =
k∑

j=1

nj∑
i=1

‖p(j)

i − p
(j)

0 ‖2
2. (4)

It is also called the within-group error sum [12]. Ward used the error sum of squared
errors to quantify the loss of information by grouping [38].

The inter-cluster error sum takes into account error sums between clusters by
considering the collection of cluster centroids to be a global pattern set, which also
has a global centroid. The inter-cluster error sum, in case of Euclidean space is
defined as

� =
k∑

j=1

e(p
(j)

0 , p0) =
k∑

j=1

‖p(j)

0 − p0‖2
2, (5)

where p0 is the global centroid defined as

p0 = 1

n

n∑
i=1

pi.

Now, we present some characteristics of these two conflicting error sums, to
be utilized in designing a measure for optimal cluster configuration as well as a
stopping criterion in hierarchical clustering algorithm. We will assume that the
hierarchical algorithm we are consiering is agglomerative. In case of divisive al-
gorithms, an analogous but opposite trend can easily be proved. We can assume
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that in the initial state of any agglomerative clustering algorithm, each pattern is
the only pattern in its own cluster. It is clear that the singleton clusters have no
contribution to the intra-cluster error sum �, and the minimum value that � can
take is zero. On the other hand, � is maximized when there is only one cluster that
contains all patterns. More interesting fact is that while clustering process proceeds,
the value of � cannot decrease. Suppose two clusters Ci and Cj are merged in a
step of agglomerative clustering. Let the new cluster Cij be the cluster obtained by
mering Ci and Cj . Then, the centroid cij of the new cluster Cij is

cij = nip
(i)

0 + njp
(j)

0

ni + nj
.

Let �b and �a be intra-cluster error sums of the items that belong to the clusters
Ci and Cj only, before and after merging, respectively. Then

�b =
ni∑
l=1

‖p(i)
l − p

(i)

0 ‖2
2 +

nj∑
l=1

‖p(j)

l − p
(j)

0 ‖2
2,

and

�a =
ni∑
l=1

‖p(i)
l − cij‖2

2 +
nj∑
l=1

‖p(j)

l − cij‖2
2.

Since, there is no split of a cluster in a path of agglomerative clustering, intra-
cluster error sum would be nondecreasing as the clustering proceeds if �a −�b �
0. We have

�a − �b =
ni∑
l=1

‖p(i)
l ‖2

2 − 2cTij

ni∑
l=1

p
(i)
l + nic

T
ij cij +

nj∑
l=1

‖p(j)

l ‖2
2

−2cTij

nj∑
l=1

p
(j)

l + njc
T
ij cij

−[
ni∑
l=1

‖p(i)
l ‖2

2 − 2(p(i)

0 )T
ni∑
l=1

p
(i)
l + ni‖p(i)

0 ‖2
2 +

nj∑
l=1

‖p(j)

l ‖2
2

−2(p(j)

0 )T
nj∑
l=1

p
(j)

l + nj‖p(j)

0 ‖2
2].

Using
∑ni

l=1 p
(i)
l = nip

(i)
0 and

∑nj
l=1 p

(j)

l = njp
(j)

0 , we have the desired result

�a − �b = 2ni‖p(i)
0 ‖2

2 − ni‖p(i)
0 ‖2

2 − 2ni(p
(i)
0 )T cij + ni‖cij‖2

2

+2nj‖p(j)

0 ‖2
2 − nj‖p(j)

0 ‖2
2 − 2nj (p

(j)

0 )T cij + nj‖cij‖2
2

= ni‖p(i)

0 − cij‖2
2 + nj‖p(j)

0 − cij‖2
2 � 0.
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Similarly, the inter-cluster error sum satisfies the following characteristics which
show the opposite trend to that of the intra-cluster error sum. Note that the global
centroid p0 does not change throughout the clustering process. The inter-cluster
error-sum � is maximized when there are n singleton clusters, which occurs at the
beginning of clustering. Then � is minimized when all n patterns belong to one
cluster at the end of clustering. It is easy to show that the value of � is nonincreas-
ing as the clustering proceeds using the triangular property of the L2 norm, the
Euclidean distance.

Our design scheme is based on the fact that intra-cluster similarity is non-
decreasing and inter-cluster error sum is nonincreasing as the agglomerative clus-
tering algorithm proceeds. When the clustering algorithm is divisive, the trend
is the other way around, which is that intra-cluster error sum is nonincreasing
and inter-cluster similarity is nondecreasing as the divisive clustering algorithm
proceeds.

We transformed the optimal clustering problem into a problem for finding the
point where the two similarities are balanced by representing these similarities by
the squared error sum in Euclidean space. We define the clustering balance as

E(χ) = α�+ (1 − α)�, (6)

where � and � denote intra-cluster and inter-cluster error sums for a specific clus-
tering configuration χ , respectively, and 0 � α � 1 is a scalar that determines the
weight between these two sums. The clustering balance E(χ) has been formulated
with the idea that intuitively optimal clustering is achieved when the error sums
have reached equilibrium. We will concentrate on the special case for α = 1/2
which provides an even balance and accordingly assume that

E(χ) = �+ �. (7)

Thus clustering behavior can be interpreted as a procedure seeking the global
minimum of clustering balance. With the definitions of clustering balance based
on the error sums, what follows will use the trade-off between inter-cluster and
intra-cluster balance to define a measure for the optimal clustering configuration.

3.2. CLUSTERING GAIN

The clustering balance can be computed in each step of a hierarchical clustering
algorithm to determine the optimal number of clusters. However, a major disad-
vantage is the high computational cost of computing clustering balance. In this
section, we introduce clustering gain which has an interesting relation to cluster
balance. In addition, clustering gain is cheap to compute. Therefore, it can be
computed in each step of clustering process to determine the optimal number of
clusters without increasing the computational complexity.

Clustering gain �j for Cj is defined as the difference between the decreased
inter-cluster error sum γj compared to the initial stage and the increased intra-
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Figure 2. Clustering gain defined by difference between error sums. (a) Initial configuration.
(b) Final configuration of cluster Cj .

cluster error sum λj compared to the initial stage. Specifically, the gain is defined
as

�j = γj − λj .

In the above equation, an equal weighting factor, one, has been assigned to both
error sums. Clustering gain is graphically illustrated in Figure 2 using cluster con-
figurations. In particular, the number of patterns of the final configuration of cluster
Cj can vary from 1 to n.

The decreased portion of the inter-cluster error sum compared to the initial stage
is denoted by

γj =
nj∑
i=1

e(p
(j)

i , p0) − e(p
(j)

0 , p0)

=
nj∑
i=1

‖p(j)

i − p0‖2
2 − ‖p(j)

0 − p0‖2
2

In addition, the increased portion of the intra-cluster error sum compared to the
initial stage is defined by

λj =
nj∑
i=1

e(p
(j)

i , p
(j)

0 ) =
nj∑
i=1

‖p(j)

i − p
(j)

0 ‖2
2. (8)
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Expanding the gain for cluster Cj gives

�j = γj − λj

=
nj∑
i=1

‖p(j)

i − p0‖2
2 − ‖p(j)

0 − p0‖2
2 −

nj∑
i=1

‖p(j)

i − p
(j)

0 ‖2
2

= (nj − 1)‖p0 − p
(j)

0 ‖2
2

since
∑nj

i=1 p
(j)

i = p
(j)

0 nj . Therefore, the total clustering gain can be computed
from

� =
k∑

j=1

(nj − 1)‖p0 − p
(j)

0 ‖2
2. (9)

We would like to emphasize that this clustering gain is very cheap to compute since
it involves only the centroids and the global centroid, and not the individual data
itme. The clustering gain �j is always greater than or equal to zero. Eventually,
the clustering gain will be positive, assuming the initial clustering configuration is
not optimal.

Apparent from Figure 3 is the fact that the optimal clustering configuration dis-
covered by a hierarchical clustering algorithm has maximum clustering gain. Since
clustering gain is minimum at the initial and final clustering stages, an optimal
configuration should be found during the middle of the clustering procedure. In
order to determine the maximum clustering gain during the middle of the clustering
procedure, we propose the clustering gain as an effectiveness criterion. Note that
clustering gain is analogous to the E value suggested by Jardine and Rijsbergen
[45], for clustering effectiveness.

It is interesting to note that the sum of clustering balance and clustering gain is
a constant for a given data set since

" = E + � = �+ � + �

=
k∑

j=1

nj∑
i=1

‖p(j)

i − p
(j)

0 ‖2
2 +

k∑
j=1

‖p(j)

0 − p0‖2
2]

+
k∑

j=1

(

nj∑
i=1

‖p(j)

i − p0‖2
2 − ‖p(j)

0 − p0‖2
2 −

nj∑
i=1

‖p(j)

i − p
(j)

0 ‖2
2)

=
k∑

j=1

nj∑
i=1

‖p(j)

i − p0‖2
2

which is determined completely based on the data, and not changed by the cluster-
ing result. Thus clustering balance can be alternatively expressed using clustering
gain as

E = � + � = " − �,



OPTIMAL NUMBER OF CLUSTERS IN HIERARCHICAL CLUSTERING 101

Figure 3. Clustering gain: the opposite concept of clustering balance. (a) Initial configura-
tion of patterns. (b) Intuitively well clustered configuration captured when clustering gain is
maximized. (c) Clustering gain (d) The sum of clustering balance and clustering gain.

where 0 � �,�,� � ". Now, we are able to find an optimal cluster configuration
by tracing clustering gain instead of clustering balance. For visual demonstration,
clustering gain � and the constant " are compared in Figure 3.

In Tracking Algorithm, we summarize how we can obtain the optimal cluster
configuration in a given hierarchical agglomerative clustering algorithm while keep-
ing track of the cluster gain value. Note that we need to keep track of the clustering
gain �(χ) since the global maximum value of clustering gain can be discovered
only after the clustering is completed.

Application of this method to hierarchical divisive clustering method is straight-
forward. To demonstrate the performance of Tracking Algorithm, the optimal con-
figuration detected by the complete-link is visualized in Figure 4. Clearly, the
configuration containing the lowest value of clustering balance coincides with the
optimal configuration produced by a human. Given the same input patterns, the
same optimal configuration has been obtained by popular agglomerative clustering
algorithms including the single-link, the average-link and Ward’s method.
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Figure 4. Visual demonstration of optimal configuration discovered by Tracking Algorithm
using the complete-link. (a) Initial configuration. (b) Optimal configuration. (c) Intra-cluster
versus inter-cluster error sum. (d) Clustering balance.

Tracking Algorithm:
1 Choose a hierarchical agglomerative clustering method(HACM)
2 Do while clustering is not complete in HACM
4 merge two clusters according to

the fusion rule of the HACM
5 keep track of maximum value for �(χ) and save χ
6 end while
7 recover the optimal configuration χ

4. Performance Evaluation of Clustering Algorithms

Given a hierarchical clustering algorithm, either clustering balance or clustering
gain can be used to find optimal configuration. Since these measures represent
clustering optimality in an absolute value, they also can be used to compare various
clustering algorithms in terms of clustering performance. To give an example we
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Figure 5. Comparison of the single-link and the average-link. (a) Optimal configuration found
by single-link. (b) Clustering balance versus the number of clusters in single-link. (c) Optimal
configuration found by average-link. (d) Clustering balance versus the number of clusters in
average-link.

estimated the practical distribution in high dimensionality using the method pro-
posed by Bennett [46]. The method is based on the observation that the variance
of the distance between patterns chosen randomly in a hyper-sphere is inversely
proportional to the dimensionality m as follows.

m x variance(a pair of patterns)  constant.

According to the equation, the higher the dimensionality is the smaller the variance
is. Thus clustering in high dimensional space can be simulated in two dimensional
space if patterns are randomly and uniformly distributed. Typically used agglomer-
ative clustering algorithms have been applied to Tracking Algorithm, and then their
optimal configurations and clustering balances are represented in Figure 5 and Fig-
ure 6. According to the results, the complete-link produces the configuration with
the lowest clustering balance. In the experiment, the complete-link outperformed
other three clustering algorithms since it produces the best configuration given the
same input patterns.

To extend our approach to practical domain, we conducted a simple experi-
ment with practical document vectors. The documents have been downloaded from
MEDLINE on-line library. They are divided into eight cancer categories including
breast, colon, weightloss, glycolic, heart attack, oral, prostate and tooth-decay.
Each category contains 500 documents. After filtering the document set using the
stoplist of SMART IR system and the stemming algorithm proposed by Porter [48],
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Figure 6. Comparison of the complete-link and Ward’s method. (a) Optimal configuration
found by the complete-link. (b) Clustering balance versus the number of clusters in the com-
plete-link. (c) Optimal configuration found by Ward’s method. (d) Clustering balance versus
the number of clusters in Ward’s method.

we applied Tracking Algorithm to the combination of Colon and Tooth categories.
The results in Euclidean space are graphically illustrated in Figure 7. Accord-
ing to the results, optimal cluster configurations can be found by our measure in
Euclidean space.

5. Estimation of the Optimal Number of Clusters for Partitional Clustering
Algorithms

A major problem accompanying the use of a partitional clustering algorithm is
the choice of the number of desired output clusters [27] and order dependency
[13]. The sensitivity to the selection of the initial partition is a problem in most
partitional algorithms [2] since the partitional clustering algorithms may converge
to a local minimum of the criterion function if the initial partition is not properly
chosen [2]. For handling large data set and avoiding such sensitivity, many efficient
algorithms have been proposed including CLARANS [19], BIRCH [47], CURE
[23], and ROCK [24]. Many clustering algorithms have efficiency and capacity,
but most partitional clustering algorithm depend on users to determine the desired
number of clusters.

Even though exhaustive enumeration of all possible assignments is not com-
putationally feasible even for small numbers of patterns [12], we can generate all
possible cases with very small number of patterns such as ten. In Figure 8, optimal
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Figure 7. Clustering balance, intra-cluster and inter-cluster squared error sums in Euclidean
space.

configurations and their clustering balances are compared with respect to ideal
configuration. For each possible number of clusters, the lowest balance is presented
in the part (a) of the figure. According to the experimental results, the complete-link
discovered the optimal configuration as closely as the ideal. However, it is risky to
generalize this result so that the complete-link is superior to all other algorithms for
all input patterns since clustering performance may change in accordance with the
distribution of the input patterns. A hierarchical clustering algorithm is considered
as the best if it produces the lowest clustering balance given particular data patterns.

As we previously described, the best configuration can be selected among op-
timal configurations produced by hierarchical clustering algorithms. Consequently,
the desired number of clusters can be estimated from the best configuration. Also
the centroids of the best configuration can be fed to partitional clustering algorithms
to avoid random initial assignments for centroids. The basic assumption of this
approach is that the best cluster configuration, the winner among configurations
produced by hierarchical clustering algorithms, will be an approximation of the
ideal cluster configuration for partitional clustering.

It is clear that the estimated number is not the true value. However, the estim-
ated number can contribute to decision of the range of the true number of optimal
clusters. To verify this assumption experimentally, we applied k-means algorithm
with all possible number of clusters. The averaged clustering balance produced
by the k-means is depicted in Figure 9 along with the number of clusters. In this
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Figure 8. Comparison of currently used agglomerative clustering algorithms to the optimal
clustering by using cluster configurations and clustering balances. (a) The optimal (b) The
single-link (c) The average-link (d) The complete-link (e) Ward’s method.

Table 1. Comparison of lowest balances

Algorithms The lowest balance The highest gain Number of clusters

Single-link 49.8603 100.139651 21

Average-link 29.2123 120.787653 10

Complete-link 27.0904 122.909583 9

Ward’s Method 29.2292 120.770844 10

experiment, the clustering balance is the average of five trials. According to the
experimental results, the desired number of clusters for the given distribution is
nine. When we apply Tracking Algorithm to four popular algorithms including
single-link, average-link, complete-link and Ward’s method, corresponding op-
timal configurations are found as in Table 1. Surprisingly, the number of clusters
produced by the complete-link is equivalent to the desired number of clusters ob-
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Figure 9. The optimal configuration and clustering balance traced by k-means. (a) Op-
timal configuration. (b) Averaged clustering balance of all possible number of clusters using
k-means.

tained by k-means using all possible k values. This result convincingly illustrates
that our clustering measure can be used for partitional algorithms to estimate the
number of desired clusters. In addition, more stable configuration and improved
performance are demonstrated in Figure 10. When the number of desired clusters
and initial centroids are estimated, k-means is able to converge quickly.

For k-medoid algorithm, the results are almost the same as k-means algorithm
except some fluctuations of clustering balance before convergence. This result is
normal since centroids and medoids are located differently in the same feature
space. As a result, the best cluster configuration found by hierarchical clustering
algorithms contributes to determining the desired number of clusters and the initial
centroids for partitional clustering algorithms.

6. Conclusion

Clustering is not a new problem in computer related disciplines. However, a huge
demand for clustering technique represented by a variety of clustering applications
demonstrates its importance. Recently, much effort has been presented to achieve
clustering efficiency and scalability. In this paper, we proposed a measure for
optimal clustering. We defined clustering balance using the squared error sums.
By searching the compromising point between intra-cluster and inter-cluster error
sums, we are able to detect the optimal clustering configuration for any hierarch-
ical clustering algorithms. For the purpose of finding an optimal configuration,
an agglomerative clustering recovers the cluster configuration with the minimum
clustering balance.
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Figure 10. Additional clustering optimization and quick convergence. (a) Optimal configura-
tion found by a hierarchical clustering algorithm. (b) Improved clustering performance.

Our approach is quite different from other traditional approaches. We evaluate
clustering optimality using only internal properties of clusters and successfully
achieve intuitive agreement for clustering optimality. In particular, the number
of desired clusters and initial centroids can be estimated from the optimal cluster
configuration, and provided to non-hierarchical partitional clustering methods. As
a result, partitional clustering algorithms are able to converge more quickly and
give lower clustering balance than those without our clustering measure.

When it comes to classification, multiple centroids in a class can be found using
our clustering measure since each class in turn is a cluster. It is natural to assume
that those centroids provide us with more accurate information describing the in-
ternal structure of a class than that represented by only one centroid. Therefore, we
believe that classification performance will be enhanced if we exploit our clustering
measure to find optimal sub-centroids in each class. The basic rationale of im-
proved classification is that classification performance is contributed by comparing
test data to multiple centroids instead of the single centroid. Therefore, we expect
that many unknown contributions of our approach will be discovered in various



OPTIMAL NUMBER OF CLUSTERS IN HIERARCHICAL CLUSTERING 109

applications of clustering while our clustering measure consistently gives feasible
solutions to optimal clustering.
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